## Données à grande échelle, partie 2

GIF-4105/7105 Photographie Algorithmique Jean-François Lalonde

#### Qu'est-ce qu'il devrait y avoir dans la région?









## Quel est l'original?



(a)





(C)

## Comment ça marche

# Trouver une image similaire dans une base de données

#### Copier une région dans le trou



## Utiliser beaucoup de données!



Truc: si vous avez assez d'images, la base de données devrait contenir des images suffisamment similaires, faciles à trouver!

## Combien d'images?



















































#### 2,000,000 images

## Aujourd'hui

#### Transférer de l'information

- Emplacement GPS
- Autre information (en fonction de l'emplacement)

#### Améliorer l'appariement

- Apparier des portions de l'image
- Déterminer ce qu'il faut apparier

## im2gps (Hays & Efros, CVPR 2008)



#### 6 millions d'images avec GPS

Quelle information géographique est disponible dans une image?









Paris



Rome





Paris



Paris



Paris



Poland





Paris



Madrid



Paris



Paris

Paris









## Exemples









Croatia



Cairo







heidelberg



Italy







France



Macau













Barcelona

Austria



## Votes













Houston



Bermuda



Mendoza



Brazil



Thailand



Arkansas











![](_page_23_Picture_1.jpeg)

![](_page_24_Picture_0.jpeg)

![](_page_24_Picture_1.jpeg)

![](_page_24_Picture_4.jpeg)

Arizona

![](_page_24_Picture_5.jpeg)

Utah

![](_page_24_Picture_7.jpeg)

Utah

![](_page_24_Picture_9.jpeg)

Utah

![](_page_24_Picture_11.jpeg)

Kenya

![](_page_24_Picture_14.jpeg)

Utah

Utah

![](_page_24_Picture_16.jpeg)

LosAngeles

Utah

![](_page_24_Picture_18.jpeg)

Utah

![](_page_24_Picture_19.jpeg)

![](_page_24_Picture_20.jpeg)

NewMexico

![](_page_24_Picture_22.jpeg)

Mendoza

![](_page_25_Picture_0.jpeg)

![](_page_25_Picture_1.jpeg)

![](_page_26_Picture_0.jpeg)

![](_page_26_Picture_1.jpeg)

California

Okiahoma

![](_page_26_Picture_4.jpeg)

![](_page_26_Picture_5.jpeg)

Zambia

![](_page_26_Picture_7.jpeg)

Kenya

![](_page_26_Picture_9.jpeg)

Hyderabad

![](_page_26_Picture_11.jpeg)

SouthAfrica

![](_page_26_Picture_12.jpeg)

SouthAfrica

![](_page_26_Picture_14.jpeg)

Kenya

![](_page_26_Picture_16.jpeg)

Kenya

![](_page_26_Picture_18.jpeg)

Ethiopia

![](_page_26_Picture_21.jpeg)

![](_page_26_Picture_22.jpeg)

![](_page_26_Picture_24.jpeg)

![](_page_26_Picture_25.jpeg)

Tennessee

Nevada

africa

Morocco

![](_page_26_Picture_30.jpeg)

![](_page_27_Picture_0.jpeg)

![](_page_28_Picture_0.jpeg)

Ohio

Philadelphia

NewYorkCity

Boston

![](_page_29_Picture_0.jpeg)

#### L'importance des données

![](_page_30_Figure_1.jpeg)

## Data-driven categories

![](_page_31_Picture_1.jpeg)

![](_page_31_Picture_2.jpeg)

![](_page_32_Picture_0.jpeg)

## Elevation gradient = 112 m / km

![](_page_33_Picture_1.jpeg)

## Elevation gradient magnitude ranking

![](_page_34_Picture_1.jpeg)

![](_page_34_Picture_2.jpeg)

![](_page_34_Picture_3.jpeg)

![](_page_34_Picture_4.jpeg)

![](_page_34_Picture_5.jpeg)

![](_page_34_Picture_6.jpeg)

![](_page_34_Picture_7.jpeg)

![](_page_34_Picture_8.jpeg)

![](_page_34_Picture_9.jpeg)

![](_page_35_Picture_0.jpeg)

Figure 2. Global population density map.
# Population density ranking





Figure 4. Global land cover classification map.



# Barren or sparsely populated



# Urban and built up



## Snow and Ice



## Savannah



### Water



### Où est-ce?



O. Vesselova, V. Kalogerakis, A. Hertzmann, J. Hays, A. A. Efros. "Image Sequence Geolocation," ICCV 2009

### Où est-ce?



## Où sont ces images?





### 15:14, June 18<sup>th</sup>, 2006

16:31, June 18<sup>th</sup>, 2006

# Où sont ces images?







15:14, June 18<sup>th</sup>, 2006

16:31, June 18<sup>th</sup>, 2006 17:24, June 19<sup>th</sup>, 2006

## Résultats (geo-loc < 400 km)

im2gps – 10% temporal im2gps – 56%

# Aujourd'hui

### Transférer de l'information

- Emplacement GPS
- Autre information (en fonction de l'emplacement)

### Améliorer l'appariement

- Apparier des portions de l'image
- Déterminer ce qu'il faut apparier



### Fontaine de Médici, Paris

A. Shrivastava, T. Malisiewicz, A. Gupta, A. A. Efros, "Data-driven visual similarity for cross-domain image matching," SIGGRAPH Asia 2011





Watch a short video to learn more.





#### medici\_summer.jpg × luxembourg gardens

### Search

About 2 results (0.29 seconds)

Image size:

1024 × 829



#### Images

- Maps
- Videos
- News
- Shopping
- More



No other sizes of this image found.

#### Visually similar













### Medici Fountain, Paris (winter)

# Google

medici\_winter.png × luxembourg gardens

### Search

About 2 results (0.29 seconds)

Image size:

713 × 600

#### Everything

#### Images

Maps

Videos

News

Shopping

More



No other sizes of this image found.

#### Visually similar









1Ô



# Google

### painting.png × describe image here

Search

About 2 results (0.29 seconds)

### Everything Images

Maps

Videos

News

Shopping

More



Image size: 319 × 482

No other sizes of this image found.

#### Visually similar







# Google

#### medici\_sketch.bmp × describe image here

### Search

About 2 results (0.29 seconds)

### Everything Images

Maps

Videos

News

Shopping

More



Image size: 443 × 482

No other sizes of this image found.

#### Visually similar







0



# Pourquoi c'est si difficile?



# Comparer les images





GIST (représentation des gradients dans l'image)



# Exemple: appariement SIFT



# Exemple: appariement SIFT

















### Parties importantes

















## Qu'est-ce qui est unique?



# Qu'est-ce qui est unique étant donné le monde?


# Support vector machine (SVM)



[Cortes and Vapnik, Machine Learning, 1995]

# Per-exemplar SVM



[Malisiewicz et al., ICCV, 2011]

# Histogram of oriented gradients (HOG)



[Dalal and Triggs, CVPR, 2005]

# Visualizer ce qui est unique





Input Query



HOG



Top Match



Learnt Weights



Top Match





Input Image



Learnt Weights



**Our Matches** 

# Sketch based Image Retrieval



# Painting based Image Retrieval



# painting2gps

Input Painting

**Estimated Geo-location** 



### Results

#### http://youtu.be/PY\_\_Fo4o67I?t=1m15s

# Les Dangers des Données

Internet contient un nombre énorme d'images (Flickr, YouTube, Picasa, etc.)

Les images ne sont pas échantillonnées aléatoirement

Plusieurs sources de biais:

- Échantillonnage
- Photographe
- Social

## Flickr Paris

















### Vrai Paris



### Vraie Notre Dame













## Biais d'échantillonnage

#### Nous aimons prendre des photos en vacances



#### Nous aimons prendre des photos en vacances



# Biais du photographe

Nous voulons que nos photos soient intéressantes, ou reconnaissables!



VS.



# Biais du photographe

#### Conventions photographiques





VS.



### **Biais social**



"100 Special Moments" by Jason Salavon

### **Biais Social**



**Mildred and Lisa** 



#### Source: U.S. Social Security Administration

Gallagher et al CVPR 2008

### **Biais social**



## Limiter le biais



Street side Google StreetView



Satellite google.com



Webcams

### Capture autonome réduit le biais

• On en a toujours un peu...

# Survol



Truc: si vous avez assez d'images, la base de données devrait contenir des images suffisamment similaires, faciles à trouver!